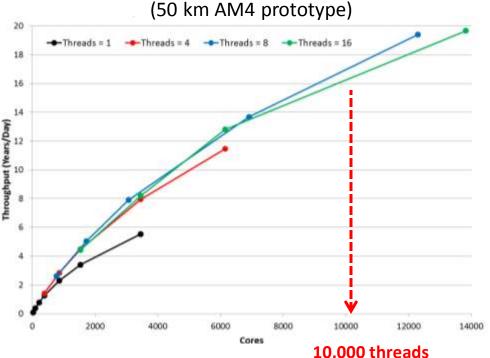
Atmospheric Dynamical Core* and Seamless Weather-Climate Modeling

* A "dynamical core" is a numerical representation of the 3D Euler equations on the sphere with a finite degree of freedom

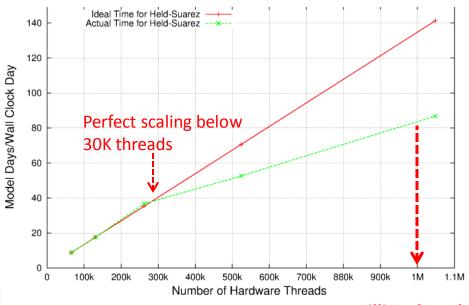
Presented by

Shian-Jiann Lin

The GFDL non-hydrostatic Finite-Volume core on cubed-sphere (FV3)


- Finite-Volume discretization & monotone advection of <u>all</u> prognostic fields (air mass, tracers, and Potential Vorticity)
 - Maintain dynamical consistency
 - Superior representation of vortical flows (e.g., tropical cyclones, super-cell thunderstorms, and tornadoes)
- Vertically Lagrangian discretization (Lin 2004)
 - ➤ Time step not limited by vertically propagating sound waves & strong updraft/downdraft; big computational advantage for global cloud-resolving simulations
- Configurable as regional, global, or 2-way nested regional-global model
- Highly scalable with hybrid (shared & distributed memory) programming

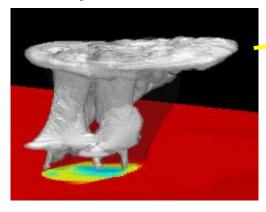
Million-core scalability via hybrid programming

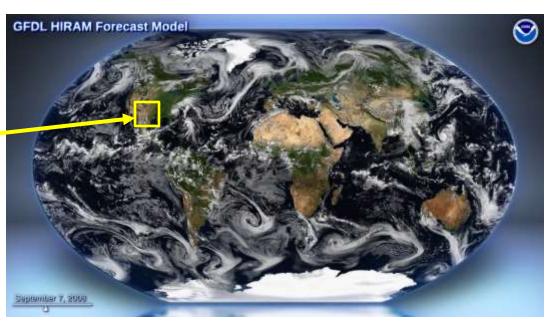

- The AM4 prototype (50 km with 30 tracers) scales well beyond 10,000 cores (left)
- A global cloud-resolving prototype (3.5 km) scales beyond 1 million cores/threads (right)

Hydrostatic C192L63 with 30 tracers on GAEA

Non-hydrostatic C2560L32 on IBM B/G

(3.5 km global cloud-permitting prototype)




1 million threads

The challenge of building a weather-ready climate modeling system

Capability: simulations & predictions of high-impact events from the smallest to the largest scale (tornadoes, thunderstorms, hurricanes, MJOs, QBOs, ENSO) all within an "IPCC-class" climate modeling system

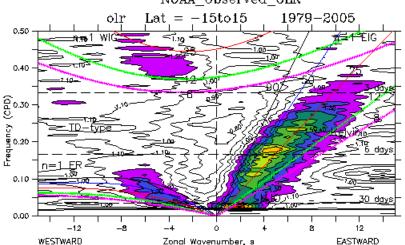
Tornadoes simulated by Super HiRAM

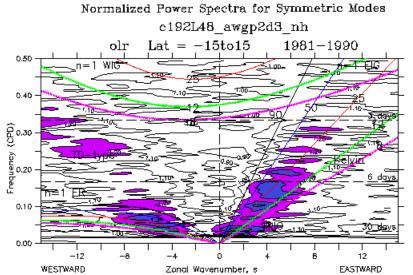
- Most climate models do not have the correct <u>dynamical</u> and <u>physical mechanisms</u> to represent kilometer-scale flows
- A new breed of seamless weather-climate model is being developed at GFDL

Why global weather-climate models should transition to non-hydrostatic dynamics within the next 5-10 years

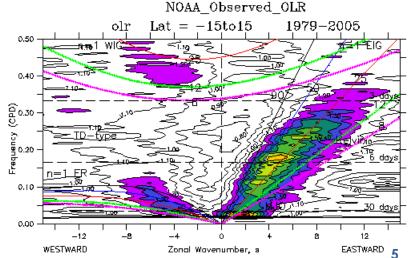
- Reduced (~50%) tropical tropopaue cold bias (even at the "hydrostatic" 50 km resolution!)
- Improved typhoon statistics in the western Pacific
- Better representation of Kelvin waves (in AM4)
- Direct simulation of QBOs without the (artificial) convective gravity wave drag parameterization
- Lastly, the resolved motion at sub-10 km is highly non-hydrostatic; for example, hydrostatic models simply can not simulate a local thunder storm

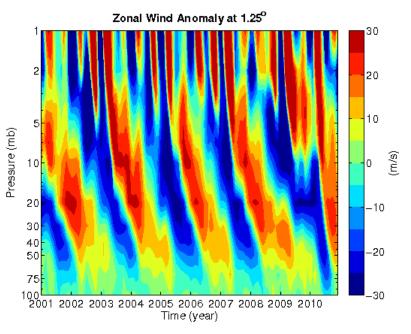
Overall:

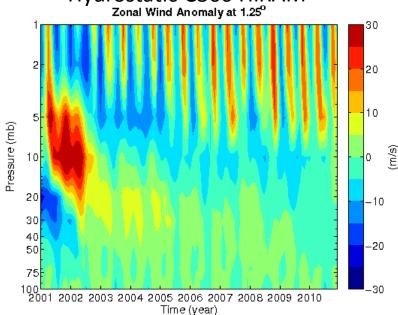

similar mean climate but better variability with the nonhydrostatic dynamics


- Everything being equal, Kelvin waves are better simulated with non-hydrostatic dynamics
- No QBOs if the Kelvin waves are too weak

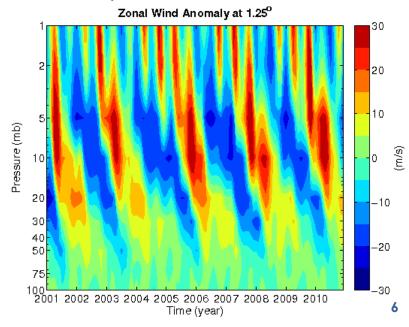
Hydrostatic AM4 prototype

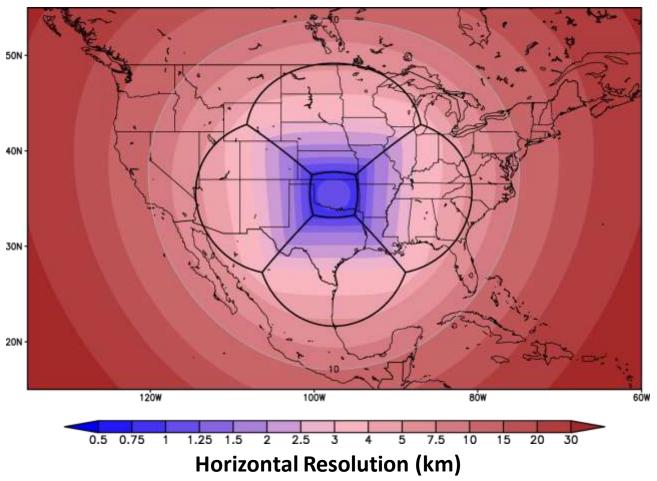

Normalized Power Spectra for Symmetric Modes
NOAA Observed OLR


Non-hydrostatic AM4 prototype


Normalized Power Spectra for Symmetric Modes

NASA Merra Data (analysis)


Hydrostatic C360 HiRAM

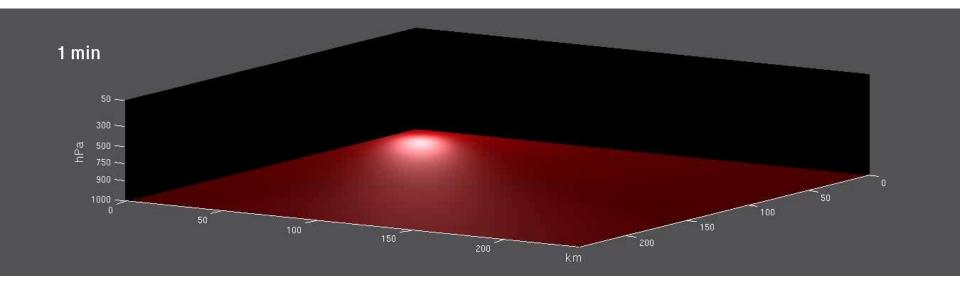

A dramatic impact of the nonhydrostatic dynamics:

- QBOs are difficult to simulate in free-running GCMs with or without convective GWD
- QBOs are believed to have significant impacts to sudden warming, stratospheric ozone, and (some also believe) hurricanes & winter storms

Non-hydrostatic C360 HiRAM

A 20X-stretched Super HiRAM capable of simulating super-cell & tornadoes

5 tiles (of the cubed-sphere) over NA with ~1 km resolution over Oklahoma, smoothly stretched to 400 km over S. Indian ocean

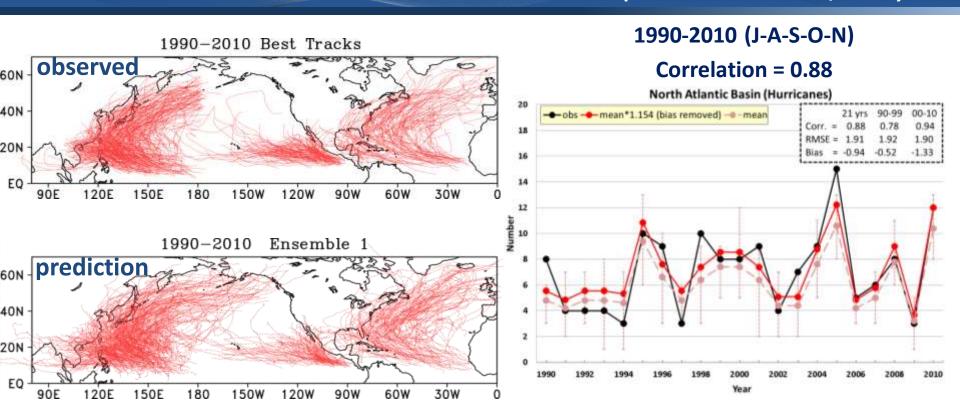

Multiple tornadoes simulated by the variable-resolution Super HiRAM

Dynamics & Physics:

Non-hydrostatic FV3 & warm-rain micro-physics (nothing else needed)

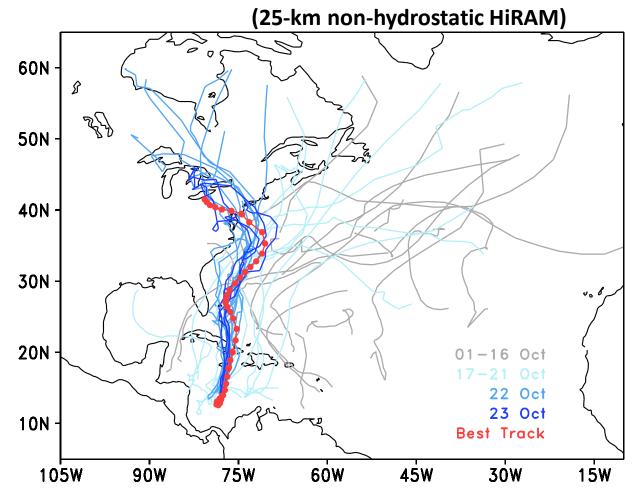
Initialization:

- Weisman & Klemp sounding (2002) with Toy (2012) quarter-circle hodograph wind profile
- 2° C warm bubble to initiate the updrafts
- Computational cost: 3-hour simulation needs ~ 2 hours (wall clock) using 384 cores (on Gaea)



Darker shade: rain water **Lighter shade**: cloud liquid water **Bottom shading**: lowest layer air temperature (illustrating cold pool))

(Animation: L. Harris)


Seasonal hurricane predictions with the (hydrostatic) 25-km HiRAM (Chen and Lin 2011, 2013)

- The highest correlation for the Atlantic hurricanes (vs. observed) in the literature
- Very small negative bias (hurricane counts) in the Atlantic basin
- A moderate positive bias (typhoon counts) in western Pacific (can be fixed if nonhydrostatic core is used)

Sandy Supplemental Project:

Long-range predictions of hurricane Sandy from 1-23 Oct

Hurricane Sandy (2012)

- Genesis: 22 Oct
- US landfall: 30 Oct
- Genesis locations are skillfully predicted after 17th (5 days before genesis)
- Forecasts after 21 Oct (9 days before landfall) started to exhibit westward turn (the left hook)
- Skillful landfall locations predicted after 22 Oct

Summary:

1. The state of the GFDL atmosphere dynamical core

- 1. Past: hydrostatic Finite-Volume (FV) core on lat-lon grid (GFDL CM2.1, NASA GEOS-5, and NCAR CCSM)
- **2. Present and near future**: FV (with non-hydrostatic option) on the cubed-sphere (HiRAM, CM3, CM4; also used by NASA GEOS-6 and some GISS climate models)
- **3. Experimental**: a new and potentially more efficient dynamical core based on a fast Riemann solver (X. Chen's poster)

2. A weather-ready climate modeling framework

- A unified modeling framework with regional-global 2-way nesting capability (poster by Harris)
- Super High Resolution Atmosphere Model (Super HiRAM):
- "seamless" simulation of tornadoes, super-cell T-storms, tropical cyclones, and QBOs using the same modeling system
- Impacts of non-hydrostatic dynamics in medium resolution (~50 km) climate simulations:

3. Sandy supplemental & High Impact Weather Prediction Project

 GFDL models are being evaluated for seasonal and sub-seasonal prediction of high-impact weather events (e.g., landfall hurricanes; probability of tornado outbreak), which could also serve as a new metric for climate model evaluation

Summary-2: supplemental

- efficient "weather-ready" high-resolution climate model that is capable of simulating severe weather events (e.g., thunder storms & tornadoes) previously thought impossible within a global modeling framework
- Transition of all climate model to non-hydrostatic should take place within a decade. With the "million core scalability" reached, GFDL is ready (if HPC is) for a km-scale global model, that is capable of super-cell & tornado simulations, for truly seamless weather-climate applications